Search results for "Contact Inhibition"
showing 10 items of 20 documents
Hippo pathway regulates neural stem cell quiescence.
2016
The transcriptional programme of contact-inhibition.
2010
Proliferation of non-transformed cells is regulated by cell-cell contacts, which are referred to as contact-inhibition. Vice versa, transformed cells are characterised by a loss of contact-inhibition. Despite its generally accepted importance for cell-cycle control, little is known about the intracellular signalling pathways involved in contact-inhibition. Unravelling the molecular mechanisms of contact-inhibition and its loss during tumourigenesis will be an important step towards the identification of novel target genes in tumour diagnosis and treatment. To better understand the underlying molecular mechanisms we identified the transcriptional programme of contact-inhibition in NIH3T3 fib…
TCDD deregulates contact inhibition in rat liver oval cells via Ah receptor, JunD and cyclin A.
2007
The aryl hydrocarbon receptor (AhR) is a transcription factor involved in physiological processes, but also mediates most, if not all, toxic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Activation of the AhR by TCDD leads to its dimerization with aryl hydrocarbon nuclear translocator (ARNT) and transcriptional activation of several phase I and II metabolizing enzymes. However, this classical signalling pathway so far failed to explain the pleiotropic hazardous effects of TCDD, such as developmental toxicity and tumour promotion. Thus, there is an urgent need to define genetic programmes orchestrated by AhR to unravel its role in physiology and toxicology. Here we show that TCDD …
Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression
2015
As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.
The aryl hydrocarbon receptor (AhR) in the regulation of cell–cell contact and tumor growth
2010
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor, which is activated by a large group of environmental pollutants including polycyclic aromatic hydrocarbons, dioxins and planar polychlorinated biphenyls. Ligand binding leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes, such as cytochrome P4501A1 and glutathione- S -transferase, respectively. Since phase I enzymes convert inert carcinogens to active genotoxins, the AhR plays a key role in tumor initiation. Besides this classical route, the AhR mediates tumor promotion and recent evide…
TCDD-dependent downregulation of gamma-catenin in rat liver epithelial cells (WB-F344).
2002
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) is the most potent tumor promoter ever tested in rodents. Although it is known that most of the effects of TCDD are mediated by binding to the aryl hydrocarbon receptor (AHR), the mechanisms leading to tumor promotion still remain to be elucidated. Loss of contact-inhibition is a characteristic hallmark in tumorigenesis. In WB-F344 cells, TCDD induces a release from contact-inhibition manifested by a 2- to 3-fold increase in DNA-synthesis and the emergence of foci when TCDD (1 nM) is given to confluent cells. We focussed our interest on potential cell membrane proteins mediating contact-inhibition in WB-F344 cells, namely E-cadherin, alpha,- beta,-…
Growth control in mammalian cells by cell-cell contacts.
1990
Growth of normal diploid mammalian cells in vitro is strongly regulated by the actual cell density. Cell-cell contacts via specific plasma membrane glycoproteins whose glycan moieties interact with specific receptors has been found to be a main growth regulatory principle. Malignant growth is suggested to result from impaired function of these receptors.
Chemotactic migration of human diploid fibroblasts is inhibited by contactinhibin.
1992
Translocation of cdk2 to the nucleus during G1-phase in PDGF-stimulated human fibroblasts.
1997
We studied the subcellular distribution of cdk2 in synchronized, PDGF-stimulated human fibroblasts (FH109). After contact inhibition and serum depletion, more than 95% of FH109 cells were arrested in G0/G1-phase. PDGF-AB led to a 16-fold increase in proliferation compared with untreated cells. Cell cycle progression was studied by flow cytometric analysis, [3H]thymidine incorporation, and phosphorylation of the retinoblastoma gene product, pRB. Using Western blot analysis after subcellular fractionation, we revealed that after PDGF stimulation the phosphorylated (Thr 160), i.e., activated, form of cdk2 (33 kDa) first appeared in the nucleus at late G1-phase and persisted throughout until to…
Isolation and characterization of a 60-70-kD plasma membrane glycoprotein involved in the contact-dependent inhibition of growth
1990
Previous studies have shown that plasma membrane compounds are involved in the contact-dependent inhibition of growth of human diploid fibroblasts. The purification of the active plasma membrane glycoprotein is described in this report. The glycoprotein has an apparent molecular mass of 60-70 kD and, due to differential sialylation, isoelectric points between pH 5.5. and 6.2. Treatment with sialidase yielded one spot in two-dimensional gel electrophoresis with an isoelectric point of 6.3. After removal of the N-glycosidically linked oligosaccharide chains, the apparent molecular mass is reduced by approximately 22 kD. Treatment was diluted NaOH, which removes the O-glycosidically linked por…